

Puro.Earth Batch 2 Output Verification

Lithos Carbon US Southeast ERW Deployment

ecoengineers.us
+1 515.985.1260

Verification Summary

EcoEngineers has been contracted by Puro.Earth on behalf of Lithos Carbon (Lithos), to conduct a validation and verification of the Lithos Carbon US Southeast ERW Deployment (hereinafter referred to as the “Southeast Facility”) enhanced rock weathering (ERW) project against the requirements specified in the Puro.earth Enhanced Rock Weathering Methodology 2022 (methodology).

There are two phases of the verification process for this project: batch 1 and batch 2. This report will detail the batch 2 verification outcomes and opinion statement. The outcome of the Southeast facility validation and the batch 1 verification was a qualified positive opinion.

EcoEngineers conducted a verification to determine whether the life-cycle analysis (LCA) model, sampling procedures, and practices for the reporting period (as further described in section 1) are free of non-conformances and material misstatements. Upon review of the submission materials, EcoEngineers conducted a risk assessment to determine the sampling and audit methodology. The EcoEngineers team reviewed the supporting documentation according to the validation and verification sampling plans.

Table 1: Summary of the Verification

Project Name	Lithos Carbon US Southeast ERW Deployment
Production Facility ID	203380
Monitoring Period	May 19, 2024 to May 20, 2025 (Batch 2)
Crediting Period	May 19, 2024 to May 18, 2029

Table of Contents

Verification Summary	vii
Section 1: Introduction	1
1.1: Project Background, Scope, and Boundaries	1
1.1.1: Project Background	1
1.1.2: Project Location	2
1.2: Audit Boundary Scope	3
1.2.1: Baseline Scenario	3
1.2.2: Boundaries	3
1.2.3: CO ₂ Removal Certificates (CORCs)	4
1.2.4: Reporting Period	5
Section 2: Audit Methodology	5
2.1: Verification Criteria	5
2.2: Materiality Threshold	5
2.3: Audit Objectives	5
2.4: Level of Assurance	6
2.5: Verification Plan	6
2.6: Strategic Analysis and Risk Assessment	6
2.7: Evidence Gathering Plan	6
Section 3: Audit Process	6
3.1: Site Visits	6
3.1.1: Requirements	6
3.2: Desk Audit	7
3.2.1: Requirements	7
Section 4: Verification Findings	8
4.1: Assessment of the Enhanced Rock Weathering model	8
4.2: Assessment of life cycle greenhouse gas emissions	8
4.3: Quantification of CO ₂ Removal Certificates (CORCs)	10
Section 5: Accuracy of Asserted Emission Reductions and Removals	12
5.1: Qualitative Material Misstatement and Non-Conformities Assessment	12
5.2: Quantitative Material Misstatement Assessment	12
Section 6: Conclusions	12

List of Appendices

Appendix #	DESCRIPTION
A	Verification Plan
B	Log of Issues
C	References
D	Auditor Competencies
E	Verification Opinion
F	Application Grower Locations

Section 1: Introduction

EcoEngineers was contracted by Puro.earth to conduct an independent, third-party production output audit of the project detailed in Section 1.1.1 and 1.1.2 of this report. EcoEngineers is independent of Lithos Carbon, completed a conflict-of-interest check, and declares there is no conflict of interest with the contracted verification of the project.

EcoEngineers is an independent, accredited, third-party Verification Body (VVB) for the Puro.earth Registry. For more information visit <https://puro.earth/partners>.

Table 1. Verification Body Auditor Information

Verification Body (VVB)	EcoEngineers
VVB Contact Information	1300 Walnut Street, Suite 100 Des Moines, Iowa, 50309 1-515-985-1260 clientservices@ecoengineers.us
ANAB Accreditation ID	9159
Lead Verifier	Zoe Nong
Site Visit Auditors	Ally Standefer, Zoe Nong
Verifier	Valerie Chan
Independent Reviewer	Jocelyn Stubenthal
Subject Matter Expert / GHG Verification Director	Andrea Adams

Competence of the verification team is demonstrated through certificates in Appendix D.

1.1: Project Background, Scope, and Boundaries

1.1.1: Project Background

Lithos Carbon (hereinafter referred to as “Lithos”) aims to accelerate Earth’s natural carbon cycle by permanently removing carbon dioxide (CO₂) from the atmosphere while simultaneously improving crop yields and soil health for farmers. The Lithos team utilizes enhanced rock weathering (ERW) by deploying organic-grade basalt dust onto agricultural farmland. ERW is the process of dissolving silicate rocks by means of a natural chemical weathering reaction when exposed to acidic rain. This chemical weathering reaction occurs instantaneously as the CO₂ from the rainwater converts to stable bicarbonate. Lithos accelerates the chemical weathering process by applying fine basalt rock dust onto farmland with high porewater CO₂ concentrations. The dissolved bicarbonate formed through chemical weathering is transferred downstream by rivers and streams to the coastal ocean, where it remains for thousands of years. On the geologic time scale, the bicarbonate biominerilizes into calcium carbonate and eventually sinks to the ocean floor, where it becomes solid limestone.

Per the Lithos Puro Project Description:

Lithos is an enhanced rock weathering company that continually deploys superfine basalt silicate waste feedstock. The feedstock is procured from a fully compliant aggregate quarry, operating under an active U.S. Mine Safety and Health Administration (MSHA) permit.

The superfine basalt feedstock is a waste byproduct of routine rock quarrying operations. With 90% of particles smaller than 114 microns, it has little to no value for conventional construction markets and no other commercial applications. This lack of market demand allows Lithos Carbon to secure substantial quantities of highly reactive, superfine material that would otherwise remain unused. By redeploying this quarry waste in local agricultural settings, Lithos unlocks meaningful carbon dioxide removal (CDR) potential.

Lithos sources local businesses to reliably transport procured superfine basalt to growers within a certain distance of the quarry. Lithos then sources local agricultural equipment to spread feedstock or apply this feedstock onto agricultural working lands at pre-determined application rates to manage soil pH. Typical agricultural equipment used by vendors are traditional agricultural equipment such as paddles or a spinning disc.

To verify changes in soil characteristics, Lithos contracts soil samplers over a series of sampling events to collect topsoil samples for analysis and archiving. Sampling events occur prior to application, immediately after application and subsequently at various time intervals throughout several growing and harvesting seasons.

Each soil sample is split for analysis by two types of 3rd party commercial laboratories: one for conventional agricultural testing and another for geochemical testing. Results from lab testing are then used to validate the impacts the soil amendment feedstock has on soil health and to quantify the CDR. Regarding the fate of the captured carbon within the soil, post-weathering alkalinity transport is conservatively evaluated by attributing discounts towards the total CDR potential measured from the basalt weathering amount. Sub-processes such as alkalinity re-equilibration in riverine and ocean environments are modeled and estimated conservatively. These discounts are accounted for upfront on the CDR estimates from basalt weathering so as to account for any uncertainties that may occur between feedstock dissolution at the soil phase to alkalinity/weathering product transport within the river and ocean boundary conditions.

1.1.2: Project Location

Lithos deployed basalt rock fines from the [REDACTED] Quarry in [REDACTED], North Carolina. The basalt fines were loaded at the quarry by facility personnel, transported via contracted third-party hauling companies, and unloaded at various farm deployment sites in the surrounding North Carolina and Virginia areas.

Table 2: Project Location Details

CO ₂ Removal Supplier	Lithos Carbon
CO ₂ Removal Supplier Address	1111B S. Governors Ave, #6084 Dover, Delaware 19904
Quarry Name	[REDACTED] Facility

Quarry Address	[REDACTED], North Carolina
Production Facility Name	Lithos Carbon US Southeast ERW Deployment
Production Facility ID	203380
Monitoring Period	May 19, 2024 to May 20, 2025 (Batch 2)
Crediting Period	May 19, 2024 to May 18 2029
Production Facility Location(s)	407 plots for 23 Growers in North Carolina and Virginia. See Appendix F for more information.

1.2: Audit Boundary Scope

1.2.1: Baseline Scenario

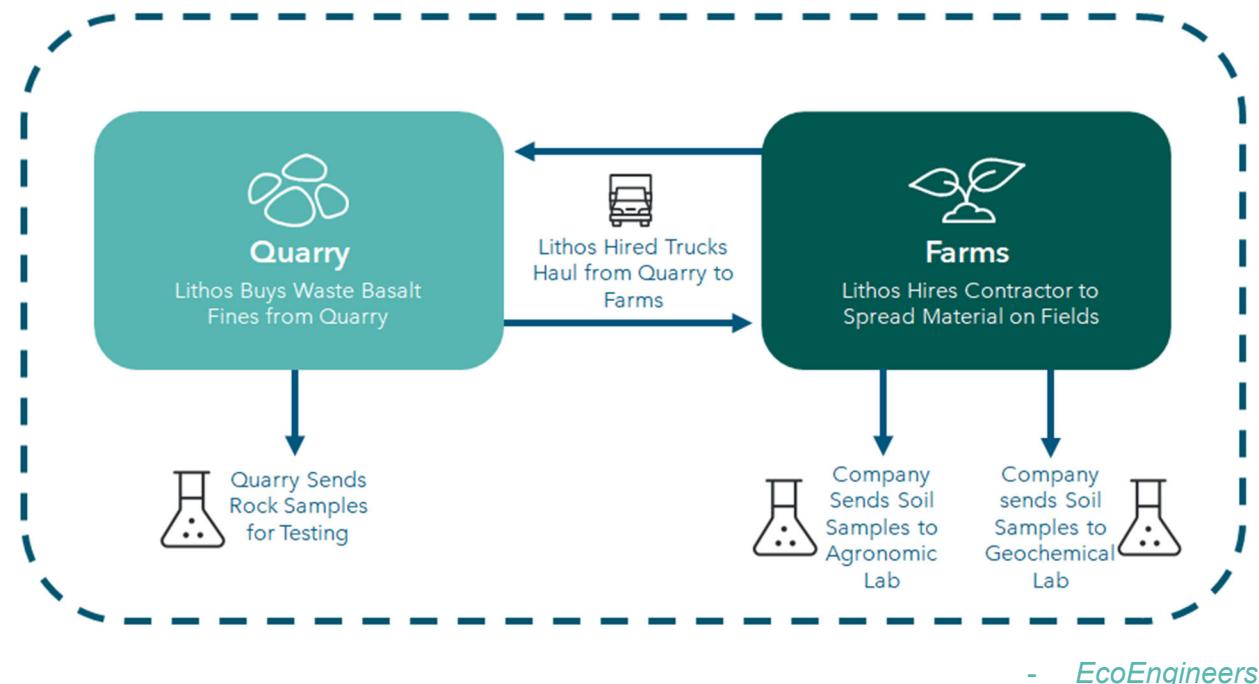
According to the Lithos Puro Project Description:

Without Lithos project activity, basalt dust is stored in large open air piles in quarry waste storage areas. The feedstock acquired as-is or burden free, as described above, is a waste byproduct created during standard crushing and grinding to produce aggregate product. Lithos does no further processing, procures, and arranges 3rd party logistics and applications as-is. To assess the weathering potential for feedstock water exposure after rainfall, we estimate the penetration depth of water into the waste pile. With a water infiltration rate of 10 mm hr-1, we estimate that feedstock spread across farmland would be exposed to water within 15 min, while it would take 50,000 longer (1.6 continuous years) for a comparable rain event to penetrate the depth of a consolidated waste pile, resulting in minimal counterfactual weathering.

Lithos actively screens and qualifies projects, the field management practices, to the best ability, characterize projects and their subsequent baseline scenario. Growers are qualified and screened before hand for their liming and other agricultural management practices for applicability. Lithos documents any provided information that may lead to any counterfactual scenario. In addition, baseline or control agronomic pH indicators also inform soil conditions of baseline scenarios. Spreading of basalt rock as a soil amendment is not a standard practice in the general project area or at the specific application site(s) listed in Section 2.2. Lithos is the only spreader of basalt rock in the region. Thus no weathering occurs without Lithos project activity.

1.2.2: Boundaries

The Lithos Southeast project consists of a cradle-to-grave system boundary. The four stages included in the boundary are described below:


1. Feedstock sourcing: Waste material (a byproduct of the quarry's grinding and milling processes) is purchased from [REDACTED] Quarry.

2. Transport: Transportation of rock fines from the quarry to the application site.
3. Application: Applying rock fines to the fields.
4. Weathering: Monitoring and sampling soils.

According to the Lithos Puro Project Description:

The CDR activity falls well within the Generic Process Boundaries for ERW in Soils defined by the Puro ERW Methodology 2022 Edition, v2.0, Section 5.1.3. Lithos accounts for activities within the categories surrounding geographical soils, specifically at the application site(s) listed in Section 2.2 of this document. The defined climatic area for North Carolina is humid subtropical, the coastal plain region. The environmental risk assessment provides identified risks and their mitigation plan.

Figure 1: Lithos LCA Boundary

1.2.3: CO₂ Removal Certificates (CORCs)

CO₂ Removal Certificates are defined in the Puro.Earth ERW Methodology as net one tCO₂e removed the atmosphere and as stated in section 6.1 by the following:

$$\text{CORCs} = C_{\text{stored}} - E_{\text{project}} - E_{\text{leakage}} - E_{\text{loss}}$$

C_{stored}: Gross amount of CO₂ stored via weathering of the applied rock. (Tonnes of CO₂)

E_{project}: Total life cycle emissions arising from the whole supply chain of the ERW activity. (Tonnes of CO₂e)

E_{leakage}: Total GHG emissions due to negative economic leakage. (Tonnes of CO₂e)

E_{loss}: Total re-emissions from initially sequestered CO₂. (Tonnes of CO₂e)

1.2.4: Reporting Period

The commitment date for the Lithos ERW is May 14, 2024, based on the date Lithos committed to implementing the CO₂ Removal Activity, the date the first physical actions were taken to implement the mitigation activity, per the commitment date definition in the Puro Standard General Rules, version 4.2.

The reporting period of the batch 2 feedstock application activities occurred from May 19, 2024, through May 20, 2025.

There is a five-day gap between the May 14, 2024 commitment date and May 19, 2024 reporting period start date. EcoEngineers reviewed and confirmed that basalt material hauling activities began on May 14, 2024, and the spreading of the basalt material at the application site started later on May 19, 2024.

Section 2: Audit Methodology

2.1: Verification Criteria

EcoEngineers' verification was conducted in accordance with the following standards, rules, requirements, and documents:

- Puro.earth Enhanced Rock Weathering Methodology 2022v.2 (Methodology)
- Puro.earth Standard General Rules. Version 4.2, approved June 30, 2025 (Rules)
- Puro.earth Clarifications for Application of Puro Standard and Methodologies, last updated October 6, 2025 (Clarifications)
- Puro.earth Validation & Verification Requirements, Version 1.2, July 2025 (V/V Requirements)
- Puro.earth Puro Standard Article 6 Procedures, Version 1.2, May 10, 2024
- IAF MD 4:2025 IAF Mandatory Document for the Use of Information and Communication Technology (ICT) for Conformity Assessment Purposes, January 30, 2025
- ISO Standard 14064-3:2019 – Specification with guidance for the verification and validation of greenhouse gas statements
- Global Reporting Initiative (GRI) Universal Standards 3: Material Topics, 2021

2.2: Materiality Threshold

The intended user has not set a materiality threshold for verification, thus EcoEngineers established the quantitative materiality threshold for material misstatement to be $\pm 5\%$ of the reported tons of CO₂ removed. EcoEngineers determines performance materiality considering the quantitative materiality threshold.

2.3: Audit Objectives

The objective of the verification is to determine conformance of the CO₂ Removal Certificate (CORC) Output Report to the applicable monitoring and reporting requirements established by the methodology, ISO Standards, and applicable criteria, and determine whether the emissions reductions claimed are within scope, real, quantifiable, additional, verifiable, counted once, and under clear ownership.

2.4: Level of Assurance

EcoEngineers designed and conducted verification services to provide a reasonable, but not absolute, level of assurance that the GHG assertion allocated to Puro.earth by projects under the program for the Southeast facility is materially in conformance with the objectives and the criteria.

2.5: Verification Plan

The verification plan is included in Appendix A.

2.6: Strategic Analysis and Risk Assessment

EcoEngineers performed a strategic analysis and a risk assessment and sampling plan (RASP), which evaluates the data's relative contribution to a material misstatement, uncertainty in calculations, and potential for incomplete reporting, as well as assessing the effectiveness of the current reporting strategy and identify strengths and weaknesses within the data. The resulting information was used to determine assertion attributes. Then inherent risk, probability and magnitude of potential risks within the data, control risks, and design and effectiveness of controls were reviewed and evaluated to determine risk assessment considerations and procedures for sampling data.

2.7: Evidence Gathering Plan

Based on the outcome of the Risk Assessment EcoEngineers requested supporting documentation for the claims made in the GHG Assertion and to receive additional information on Lithos' practices.

Section 3: Audit Process

3.1: Site Visits

3.1.1: Requirements

A site visit must be completed to verify the operations taking place at the project site. Project personnel made available all records, permits, policies, procedures, and protocols, and provided access to appropriate areas of each site. EcoEngineers staff completed all required activities based on the sampling and verification plan for the project and its professional judgment, including, but not limited to:

- Reviewed supporting evidence on-site
- Interviewed key personnel related to preparing and collecting data
- Reviewed the data management system
- Directly observed the production equipment, confirmed the process diagram accuracy, and accounting systems associated with high risk
- Assessed measurement device accuracy and reviewing financial transactions as necessary

EcoEngineers previously completed an in-person site visit to the Lithos Southeast location on August 4, 2025 for a verification for the Isometric Registry. During the site visit, it was confirmed that:

- The [REDACTED] quarry:
 - Was operational at the time of the site visit and the quarry produced ERW feedstock (Basalt sand)
 - The ERW feedstock is a waste product of the quarry
 - Truck scales are present to measure quantity of feedstock sold to Lithos

EcoEngineers randomly sampled two growers for an interview held on November 19, 2025. During the virtual site visits, it was confirmed that:

- Feedstock was spread on the fields within the reporting period
- Soil tests are completed by the farmer and independent third parties hired by lithos
- Lithos monitors of soil quality twice a year and of breakdown of ERW material
- Control and treatment plots were used
- Lithos only applies feedstock to fields that are suitable

3.2: Desk Audit

3.2.1: Requirements

EcoEngineers, the third-party VVB, used professional judgment in establishing the extent of data checks for each data type, as indicated in the sampling plan, which were needed for the team to conclude with reasonable assurance whether the data type specified for the application or report is free of material misstatement. At a minimum, the data checks selected by the VVB included the following:

- Tracing data in the LCA and CORC Summary Report to its origin;
- Reviewing the procedure for data compilation and collection;
- Reviewing and confirming the theoretical simulation approach against current and cited literature;
- Recalculating intermediate and final data to check original calculations;
- Reviewing calculation methodologies used by the entity required to contract for verification services;
- Reviewing meter and analytical instrumentation measurement accuracy and calibration for consistency with the requirements;
- Observation of data management practices during the site visit and interviewing key personnel.

Section 4: Verification Findings

4.1: Assessment of the Enhanced Rock Weathering model

EcoEngineers reviewed the Lithos model simulation using guidelines from the Puro.earth Enhanced Rock Weathering Methodology 2022 v.2, and references from published scientific literature (Appendix C).

The Lithos model simulation estimates the basalt weathering fraction and associated carbon dioxide removal by a temperature-dependent dissolution rate term of the Arrhenius equation, a baseline kinetic constant converted to discrete geochemical units using specific surface area, and molar mass (Navarre-Sitchler, A., Brantley, S. 2007). A weathering maximum of 90% was used to approximate interstitial clay-bound cations, allowing for a conservative 10% reduction. The model indicates Magnesium, Calcium, and Sodium as the dominant cations released from the basalt feedstock, and thus the weathered fraction. Rainfall is also factored in on a climate-based precipitation rate.

The model simulation utilizes an uncertainty sensitivity analysis of 20% to each key parameter: temperature, rainfall, and specific surface area. The model description compares two recent ERW-based studies (Kantola et al., 2023 and Beerling et al., 2024) that utilize similar framework. Lithos' model is consistent with literature reported values.

The model is in the form of a Python code, which computes total change in cations from the post-spread baseline (BLP) and sampling round one (R1) by inputting geochemical batch data, acre information per each deal ID (specific plot), and agricultural correction factors to the Python code. The code converts oxides to elemental concentration, applies pre-processing and agronomic corrections, performs 10,000 resampling iterations to estimate stable median concentrations, scales all treatment-phase cation medians using chromium as the immobile tracer, and computes the change in cations from R1 to the BLP in mean equivalents.

It should be noted that with using waste fines and quantifying carbon sequestration on a post spread basis, the need for counterfactual calculation is theoretically eliminated. Lithos provided further supporting documentation and EcoEngineers verified that the alternative fate scenario of the basalt fines stored in waste piles does not result in counterfactual weathering. The precipitation duration required to infiltrate the pile and reach exfiltration before dissolved CO₂ is consumed -- which is not replenished further as there is no biological respiration -- is statistically improbable.

As outlined in Section 8.2.1(a-c), the model was provided with site-specific data, including information on basalt application, results from soil geochemical and agronomic laboratory tests, and climate conditions.

EcoEngineers noted the model simulation does not include possible secondary effects on dissolution of grains such as fluid supersaturation, clay formation and surface passivation effects; weather rates affected by pH; and a respect-to-expected-performance in the field as noted in section 8.1 of the Enhanced Rock Weathering Methodology. See the Verification Opinion in this report and Appendix E for more information.

4.2: Assessment of life cycle greenhouse gas emissions

EcoEngineers reviewed the inputs to the Lithos LCA model using guidelines from the Puro.earth Enhanced Rock Weathering Methodology 2022 v.2, and references from published scientific

literature. Each CI reference and emission factor was comprehensively reviewed and are supported by the current scientific consensus. EcoEngineers noted zero discrepancies.

The Lithos LCA covers emissions associated with sourcing the weathering material, transporting the weathering material, applying the weathering material to the soil, and monitoring operations during the weathering phase. Lithos claims zero emissions from processing the weathering material as the basalt feedstock is categorized as waste fines from [REDACTED] quarry. EcoEngineers verified the basalt waste categorization on site and through documentation.

Table 3 summarizes the data points and metrics that underwent verification.

Table 3: Summary of LCA Inputs

Level 1 Categories	Activity	Quantity	Unit
E sourcing	Waste Fines	54,429.31	Short-tons
E transport	Hauling	[REDACTED]	Short-ton miles
E application	Loading	[REDACTED]	Gallons of Diesel
	Spreading	[REDACTED]	Gallons of Diesel
	Conservative estimate of Spreader and Loader travel	[REDACTED]	Miles
	Agronomic Sampling	[REDACTED]	Kilometer metric ton
E application	Geochemical Sampling	[REDACTED]	Kilometer metric ton
	Conservative estimate of Sampler travel	[REDACTED]	Miles
	Single Use Paper bags for Sampling	[REDACTED]	#
	Price of Agronomic Testing	[REDACTED]	USD
	Price of Geochemical Testing	[REDACTED]	USD
E weathering	Agronomic Sampling	[REDACTED]	Kilometer metric ton
	Geochemical Sampling	[REDACTED]	Kilometer metric ton

Level 1 Categories	Activity	Quantity	Unit
	Conservative estimate of Sampler travel	[REDACTED]	Miles
	Single Use Paper bags for Sampling	[REDACTED]	#
	Price of Agronomic Testing	[REDACTED]	USD
	Price of Geochemical Testing	[REDACTED]	USD

EcoEngineers confirmed that the plots used for this verification do not overlap other plots used in the Isometric registry. Application acres were confirmed through GIS plotting, virtual site visit confirmation, and document review, noting zero discrepancies.

To confirm the quantity of waste fines, EcoEngineers sampled 5% of the total scale tickets and hauling BOLs for review, noting zero discrepancies.

Travel distances from the quarry to the plots and physical sample travel to the agronomic and geochemical laboratories were verified through Google Maps and air travel calculators, noting zero discrepancies.

Individual loading and spreading equipment travel was not directly measured on the field and estimated based on a conservative assumption of the maximum plot radius (at a minimum being 50 miles) multiplied by the number of application sites. EcoEngineers reviewed the estimation method and noted one discrepancy that was resolved.

Diesel use was not directly measured in field but was estimated from a California Air Resource Board accepted “In-use Off-Road Diesel-Fueled Fleets Regulation” emissions calculation method using horsepower, activity hours, and load-dependent emission factors. EcoEngineers reviewed each input parameter noting zero discrepancies.

Application and weathering sampling size, events, paper bag use, and estimated one-way travel for the sampler vendor was verified through laboratory results, monitoring plan documentation, and GIS files, noting one discrepancy that was resolved

Agronomic and Geochemical Laboratory costs invoices were reviewed and recalculated, noting one discrepancy that was resolved

4.3: Quantification of CO₂ Removal Certificates (CORCs)

EcoEngineers reviewed the inputs into the CORC Removal Summary using guidelines from the Puro.earth Enhanced Rock Weathering Methodology 2022 v.2, and references from published scientific literature.

The CORC Summary Report quantifies CO₂ Removal Certificates from these inputs and calculated values: amortization time; carbon stored; carbon storage losses; emissions

associated with basalt sourcing, transportation, and application; and emissions associated with monitoring. Baseline removal and carbon loss to land use change are zero.

Gross Carbon Stored is calculated via the model simulation as explained in Section 4.1.4 of this report. Output results on the change in calcium, magnesium, and sodium from the baseline post spreading and sampling in round one were compared against the inputs to the Summary CORC Reports, noting three discrepancies that were resolved. EcoEngineers confirmed that the CORCs stated from Batch 1 are not claimed during the Batch 2 reporting calculator.

The carbon storage losses have fixed percentage-based values for infiel non-carbonic acid neutralization, plant uptake, riverine loss, and marine loss. Lithos calculated a 1.26% infiel strong acid weathering derived from fertilizer addition. Standard 5%, 5%, and 10% were utilized for the other three loss pathways respectively as noted in Section 6.7.3 (c, e, f) of the Puro Enhanced Rock Weathering Methodology.

EcoEngineers reviewed the CDR potential calculations against the cited Steinour equations and laboratory basalt results on the percent weight of calcium, magnesium, and sodium. [REDACTED]

[REDACTED]

EcoEngineers compared the emissions associated with sourcing, transportation, application, and monitoring against the verified LCA. See Section 4.2 of this report for more information on the inputs used to calculate these emissions. EcoEngineers noted zero discrepancies

Table 4 summarizes the CORC certificates calculation that underwent verification.

Table 4: CORC Summary Report Calculation Inputs

	Value	Unit
Gross Carbon Stored	3,079.22	tonne CO ₂ e
Emissions associated with application	59.32	tonne CO ₂ e
Emissions associated with Monitoring	3.54	tonne CO ₂ e
Carbon Storage Loss	654.65	tonne CO ₂ e
Amount of material applied during the current reporting period	42,751.92	Dry tonnes
Total area of application sites	957.16	Hectares
CORCs	2,361.71	tonne CO ₂ e

Section 5: Accuracy of Asserted Emission Reductions and Removals

5.1: Qualitative Material Misstatement and Non-Conformities Assessment

EcoEngineers noted two findings related to qualitative material misstatements in the Log of Issues (appendix B). The model simulation did not include possible secondary effects on dissolution of grains such as fluid supersaturation, clay formation and surface passivation effects; weather rates being affected by pH; and a respect-to-expected-performance in the field as noted in section 8.1 of the Enhanced Rock Weathering Methodology. Lithos stated they are unable to make necessary changes to include this information. EcoEngineers concluded that since these discrepancies did not affect crediting, the issues were resolved with a qualified positive opinion. The other finding was resolved by lithos and detailed on the Log of Issues (appendix B).

5.2: Quantitative Material Misstatement Assessment

EcoEngineers noted six findings related to quantitative material misstatements in the Log of Issues (appendix B). All issues were resolved and verified as corrected prior to finalizing the report.

Section 6: Conclusions

The EcoEngineers team completed the output audit, to a reasonable level of assurance, for the Lithos Carbon US Southeast ERW Deployment for the monitoring period of May 19, 2024 to May 20, 2025 (Batch 2) in accordance with the criteria listed in Section 2.1 of this report.

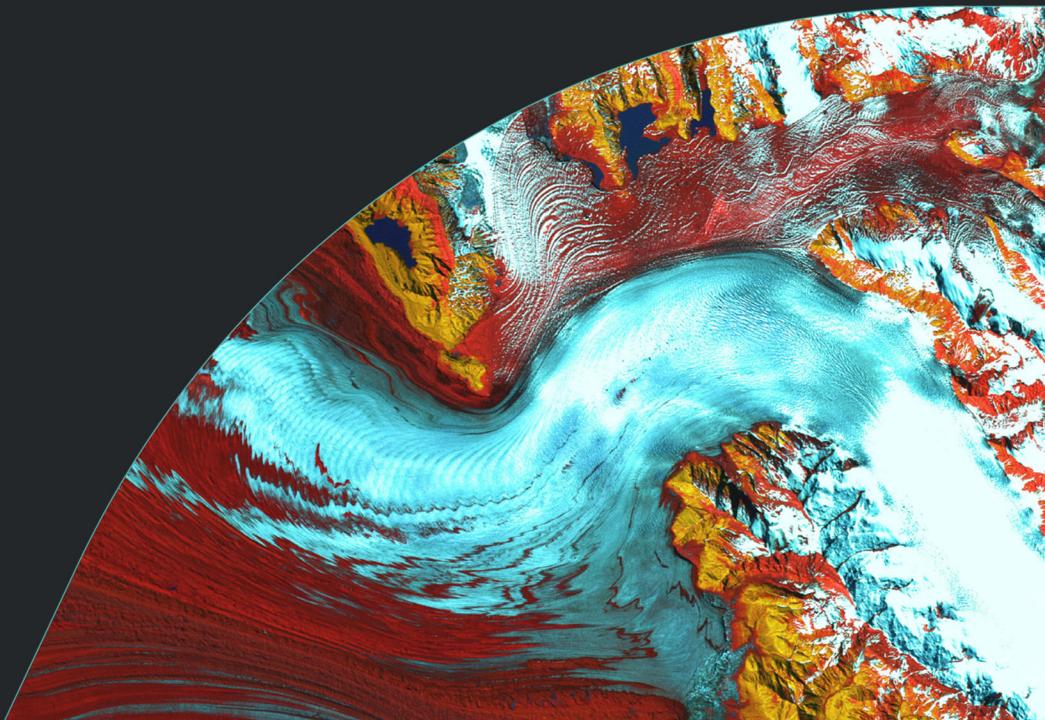
EcoEngineers verified the CORC Summary report values that are listed in Table 4 of this report.

EcoEngineers noted five findings related to supporting document omissions and eight findings related to discrepancies with the submitted data and inputs to the LCA and CORC Summary Report. All findings were resolved except for one, for which qualifications were specified. See Appendix B for a detailed breakdown of the types of issues found as well as the qualifying statement below.

In conclusion, Lithos prepared and submitted the GHG Statement to Puro.earth **free of material misstatement**; however, elements of the GHG Statement were **not in conformance** with the requirements of the Puro.earth Enhanced Rock Weathering Methodology 2022 v2.

The result is a **Qualified Positive Verification Statement**. The basis for this statement is summarized in the list below, detailed in this verification report, the accompanying verification statement (Appendix E), and is further supported by the other appendices to this report.

Qualifications were issued with regards to:


- The ERW is missing possible secondary effects, contrary to requirements from Section 8.1 of the methodology.

Important Information

This report and its attachments and/or other accompanying materials (collectively, the "Deliverables"), were prepared by TPR Enterprises, LLC, d/b/a EcoEngineers ("EcoEngineers"), an LRQA company, solely for the identified client ("Client") and no other party. Client may use the Deliverables solely for the express purpose for which they were prepared, subject to the assumptions and limitations set forth in them and any underlying scope of work, master services agreement, and/or other governing instrument. Client's use of the Deliverables is subject to certain assumptions and limitations, including the following: the Client is the sole intended user of the Deliverables; all information, summaries and/or conclusions set forth in the Deliverables are provided as of a particular date(s) and, as such, the Deliverables have not been updated to address changes and other matters that may have arisen after such particular date(s); and in preparing the Deliverables, EcoEngineers has reviewed and relied on data, documentation, and other information delivered to it or its affiliates and should such information be erroneous, misleading, or incomplete, in whole or in part, same may impact any conclusions set forth in the Deliverables. Any third party (other than Client) who receives, in whole or part, a copy of the Deliverables, may not rely on it for any purpose.

About EcoEngineers

EcoEngineers, an LRQA company, is a consulting, auditing, and advisory firm with an exclusive focus on the energy transition. From innovation to impact, Eco helps its clients navigate the disruption caused by carbon emissions and climate change. Eco helps organizations stay informed, measure emissions, make investment decisions, maintain compliance, and manage data through the lens of carbon accounting. Its team of engineers, scientists, auditors, consultants, and researchers live and work at the intersection of low-carbon fuel policy, innovative technologies, and the carbon marketplace. Eco was established in 2009 to steer low-carbon fuel producers through the complexities of emerging energy regulations in the United States. Today, Eco's global team is shaping the response to climate change by advising businesses across the energy transition. Recently, Eco was named one of the top ten global sustainable consulting companies by [Sustainability Magazine](#). For more information, visit www.ecoengineers.us.

VALIDATION AND VERIFICATION PLAN

CLIENT / RESPONSIBLE ENTITY / INTENDED USER INFORMATION

GHG Program / Intended User	Puro.Earth
Validation Report Type	Project Description and Monitoring Plan
Verification Report Type	CO2 Removal Certificate (CORC) Output Report
Company Name	Lithos Carbon
Company Location and Address	1111B S Governors Avenue #6084, Dover, Delaware, 19904
Company / Responsible Entity Contact	Kirk Liu; Head of Commercial Delivery; kirk@lithoscarbon.com; 425-279-9700 Alex Wolfson; Carbon Program Manager; alex@lithoscarbon.com; 425-279-9700
Project Name / Puro Production Facility ID	US Southeast Facility / ID #203380
Project Location and Address	[REDACTED], North Carolina, United States
Project Contact	Kirk Liu; Head of Commercial Delivery; kirk@lithoscarbon.com; 425-279-9700 Alex Wolfson; Carbon Program Manager; alex@lithoscarbon.com; 425-279-9700

PROJECT & VALIDATION / VERIFICATION INFORMATION

Sectoral Scope	Project Level 4 Carbon Capture and Storage (CCS), direct air capture (DAC), and other engineered removals
Monitoring Period Dates:	5/19/2024 - 2/27/2025 (Batch 1) 5/19/2024 - 5/20/2025 (Batch 2)
Description of Project	The Lithos Southeast project activity sources basalt waste product feedstock from a North Carolina quarry and applies this feedstock as a soil amendment to nearby application site(s).
Validation Scope	The scope of the validation is to determine whether the US Southeast Facility / ID #203380 Project Description and Monitoring Plan conform to the requirements of the Puro.earth Enhanced Rock Weathering Methodology 2022v.2, Puro.earth Standards, and Requirements.
Validation Objective	The objective of the validation is to assess the likelihood that implementation of the US Southeast Facility / ID #203380 project activities described in Project Description and Monitoring Plan will result in the achievement of GHG outcomes as stated by Lithos Carbon and whether the documents conform to the requirements established by Puro.earth Enhanced Rock Weathering Methodology v.2 and applicable criteria.
Verification Scope	The scope of this verification is to determine to a reasonable level of assurance whether Lithos Carbon has collected data and prepared the CO2 Removal Certificate (CORC) Output Report in conformance with the requirements of the Puro.earth Enhanced Rock Weathering Methodology 2022 v.2, ISO 14064-3 and applicable criteria, and whether it is free of material misstatement. There are two separate verifications for this project due to contract and client needs. They two verifications are labeled as batch 1 and batch 2.
Verification Objective	The objective of the verification is to determine conformance of the CO2 Removal Certificate (CORC) Output Report to the applicable requirements established by Puro.earth Enhanced Rock Weathering Methodology v.2, the ISO Standards and applicable criteria.
Criteria	Validation / Verification will be conducted in accordance with the following regulations and standards: <ul style="list-style-type: none"> • Puro.earth Enhanced Rock Weathering Methodology 2022 v.2 • Puro.earth Standard General Rules, Version 4.2, approved June 30, 2025 (Puro Standard) • Puro.earth Clarifications for Application of Puro Standard and Methodologies, last updated October 6, 2025 • Puro.earth Additionality Assessment Requirements, Version 2.0, June 7, 2024 • Puro.earth Validation & Verification Requirements, Version 1.2, July 2025 • Puro.earth Stakeholder Engagement Requirements, Version 1.1, May 13, 2024 • Puro.earth Puro Standard Article 6 Procedures, Version 1.2, May 10, 2024 • Puro.earth SDG Assessment Requirements, Version 1.0 • IAF MD 4:2025 IAF Mandatory Document for the Use of Information and Communication Technology (ICT) for Conformity Assessment Purposes, January 30, 2025 • ISO Standard 14064-3:2019 – Specification with guidance for the verification and validation of greenhouse gas statements • Global Reporting Initiative (GRI) Universal Standards 3: Material Topics, 2021
Verification Level of Assurance	Reasonable
Materiality	Errors, omissions, misrepresentations, discrepancies related to ownership or applicability criteria, and non-conformities to Puro.earth criteria and applicable methodology requirements are examples of qualitative materiality considerations that could impact the decisions of EcoEngineers and Puro.earth. The intended user has not set a materiality threshold for verification. Thus, EcoEngineers establishes the quantitative materiality threshold for material misstatement to be $\pm 5\%$ of the reported metric tonnes of CO2 equivalent (tCO ₂ e) removed. EcoEngineers determines performance materiality considering the quantitative threshold.
GHGs	CO ₂ , CO ₂ e
SSRs	Reservoir 1. Superfine basalt silicate feedstock Reservoir 2. Carbonic acid in water from rainwater and root respiration Source 1. Project emissions from sourcing waste fines, transportation of waste fines, application of waste fines (loading, spreading, sampling, testing), weathering Source 2. Loss emissions from sub-process such as alkalinity re-equilibration in riverine and ocean environments, plant uptake losses.

VALIDATION AND VERIFICATION PLAN

ECOENGINEERS VALIDATION / VERIFICATION TEAM

Lead Validator / Verifier	Zoe Nong
Validation / Verification Team Member(s)	Valerie Chan
Technical Lead / Site Visit Auditor	Zoe Nong, Ally Standefer
Subject Matter Expert	Andrea Adams
Project Manager	Nick Nelson
Independent Reviewer	Jocelyn Stubenthal

SCHEDULE OF VALIDATION / VERIFICATION ACTIVITIES

External Validation / Verification Kickoff & Planning meeting	2025/09/20
Lithos Carbon provides Project Description and Monitoring Plan, CO2 Removal Certificate (CORC) Output Report, calculations, data and information to EcoEngineers	2025/09/16
EcoEngineers conducts strategic analysis and risk assessment, and prepares sampling/evidence-gathering plan	2025/09/23
Document Request to Lithos Carbon	As necessary
Site Visit Date	2025/11/04
EcoEngineers conducts document/data review and recalculations	2025/10/01
Initial Log of Issues submission date	2025/10/24
Lithos Carbon responds to and addresses log of issues	Within one week
Independent Review	2025/11/20
Final Log of Issues submission date	As necessary
Lithos Carbon responds to log of issues corrective actions	Within one week
Validation / Verification Report submission date to Puro.Earth and Lithos Carbon	11/28/2025 (estimate)
Exit Meeting	As necessary

SITE VISIT SCHEDULE

2025/11/04	Batch 1 Virtual Farmer Interview
2025/11/19	Batch 2 Virtual Farmer Interview No.1
2025/11/19	Batch 2 Virtual Farmer Interview No.2

Initial Validation / Verification Plan Created	2025/10/10
Final Validation / Verification Plan Date	2025/11/21

Validation / Verification Plan Sign off

Name of Lead Verifier: Zoe Nong
Date: 2025/11/21

Signature of Lead Verifier:

Log of Issues – Lithos Carbon - US Southeast Batch 2 ERW Deployment

Lead Verifier: Zoe Nong

Facility (ID#): 203380

#	Type	Date Issued	Issue Description	Resolution	Impact on material misstatement? (Y/N)	Impact on non-conformance? (Y/N)	Impact on adverse verification statement if not addressed? (Y/N)	Date Resolved
1	Supporting Document Omission	11/10/2025	Missing updated grower agreements attesting to a waive in rights for the Carbon Credits.	Provided EcoEngineers missing documentation. RESOLVED	N	Y	Y	11/24/2025
2	Supporting Document Omission	11/10/2025	Missing Geochemical Lab results to verify the number of samples taken at BL, BLP, and R1.	Provided EcoEngineers missing documentation. RESOLVED	Y	Y	Y	11/21/2025
3	Discrepancy	11/10/2025	LCA LCI Tab: Update Number of sites for the EF-LoaderTransport and EF-SpreaderTransport sections.	Provided EcoEngineers an updated LCA. RESOLVED	Y	Y	Y	11/21/2025
4	Supporting Document Omission	11/10/2025	Missing Agronomic and Geochemical Lab invoices.	Provided EcoEngineers missing documentation. RESOLVED	Y	Y	Y	11/21/2025
5	Supporting Document Omission	11/10/2025	Missing Moisture testing documents and summary spreadsheet.	Provided EcoEngineers missing documentation. RESOLVED	N	Y	Y	11/21/2025
6	Discrepancy	11/10/2025	LCA LCI Tab: Update the sampler travel distance to the conservative distance from the quarry to each plots.	Provided EcoEngineers an updated LCA. RESOLVED	Y	Y	Y	11/21/2025
7	Discrepancy	11/10/2025	CORC Summary Report: Turn 'Claimed during current period' to fasle for the Stainback application site to prevent double counting.	Provided EcoEngineers an updated CORC Summary Report. RESOLVED	Y	Y	Y	11/21/2025
8	Discrepancy	11/10/2025	CORC Summary Report: When recalculating Wm applied using (Tonnes of meterial times (1-moisture percentage) times 0.907, the value does not match the total.	Provided EcoEngineers an updated CORC Summary Report. RESOLVED	Y	Y	Y	11/21/2025
9	Supporting Document Omission	11/10/2025	Missing supporting document behind CDR potential calculation.	Provided EcoEngineers missing documentation. RESOLVED	Y	Y	Y	11/21/2025
10	Discrepancy	11/10/2025	Output Audit Calculations: The results of the code calculation includes Deal ID █, which is not a part of this verification.	Provided EcoEngineers an updated CORC Summary Report. RESOLVED	Y	Y	Y	11/21/2025

#	Type	Date Issued	Issue Description	Resolution	Impact on material misstatement? (Y/N)	Impact on non-conformance? (Y/N)	Impact on adverse verification statement if not addressed? (Y/N)	Date Resolved
11	Discrepancy	11/10/2025	Output Audit Calculations: The results do not match the supporting information tab in the CORC Summary Report.	Provided EcoEngineers an updated CORC Summary Report. RESOLVED	Y	Y	Y	11/21/2025
12	Discrepancy	10/30/2025	The Model Simulation Description does not include "a description of... any possible secondary effects affecting the dissolution of grains such as fluid supersaturation, clay formation and surface passivation effects," The description also does not "include the most important factors arising from the changes in the environment (such as weathering rates being affected by pH, plants taking up and releasing ions etc.)" The description also does not include a "respect to expected performance in the field (e.g. goodness-of-fit indicators, Root Mean Square Error)".	Lithos is "unlikely to have time to upgrade the model in time for this verification, but have noted these points for improvement ahead of the next verification. It is our understanding, from discussions with Puro, that the Model is meant to develop over time and is not used for crediting." RESOLVED WITH A QUALIFIED POSITIVE OPINION	N	Y	N	11/12/2025
13	Discrepancy	11/21/2025	The invoice 09-194958, does not contain information for Deal ID [REDACTED] as noted in the supporting tab of the LCA.	Provided EcoEngineers an updated LCA. RESOLVED	N	Y	N	11/24/2025

References

Beerling, D. J., Epihov, D. Z., Kantola, I. B., Masters, M. D., Reershemius, T., Planavsky, N. J., Reinhard, C. T., Jordan, J. S., Thorne, S. J., Weber, J., Val Martin, M., Freckleton, R. P., Hartley, S. E., James, R. H., Pearce, C. R., DeLucia, E. H., & Banwart, S. A. (2024). Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. *Proceedings of the National Academy of Sciences*, 121(9), Article e2319436121. <https://doi.org/10.1073/pnas.2319436121>

Kantola, I. B., Blanc-Betes, E., Masters, M. D., Chang, E., Marklein, A., Moore, C. E., von Haden, A., Bernacchi, C. J., Wolf, A., Epihov, D. Z., Beerling, D. J., & DeLucia, E. H. (2023). Improved net carbon budgets in the US Midwest through direct measured impacts of enhanced weathering. *Global Change Biology*, 29(24), 7012–7028. <https://doi.org/10.1111/gcb.16903>

Navarre-Sitchler, A., Brantley, S. (2007). Basalt weathering across scales. *Earth and Planetary Science Letters*, 261(1), 321–334. doi:10.1016/j.epsl.2007.07.010

P. Renforth, P. A. E. Pogge von Strandmann, and G. M. Henderson. The dissolution of olivine added to soil: Implications for enhanced weathering. *Applied Geochemistry* 61, 2015, pp. 109–118. doi: 10.1016/j.apgeochem.2015.05.016

State of California
AIR RESOURCES BOARD

EXECUTIVE ORDER H3-25-034

Relating to the Accreditation as a Lead Verifier of Low Carbon Fuel Standard (LCFS) Data Reports
Pursuant to Section 95502 Title 17, California Code of Regulations

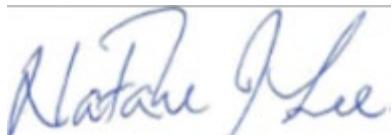
Zoe Nong

WHEREAS, the California Air Resources Board (CARB), pursuant to the California Global Warming Solutions Act of 2006 (Statutes of 2006; Chapter 488; Health and Safety Code sections 38500 et seq.), has established the LCFS program contained in sections 95480-95503, title 17, California Code of Regulations;

WHEREAS, the LCFS program requires the use of independent verifiers for verification of LCFS data reports and establishes requirements for the accreditation of verification bodies and individual verifiers by CARB;

WHEREAS, the Executive Officer or their delegate has determined that the verifier meets the LCFS verifier accreditation requirements in sections 95502(c)(1) through (2) and has met, as applicable, the training and exam requirements in section 95502(a) and (c)(3)(G);

WHEREAS, the Executive Officer has determined that the verifier meets the lead verifier requirements in section 95502(c)(3);


WHEREAS, the Executive Officer has determined that the verifier meets the additional lead verifier requirement for experience in alternative fuel production technology and process engineering, pursuant to section 95502(c)(4), to lead validation of Fuel Pathway Applications and verification of Fuel Pathway Reports;

NOW, THEREFORE, IT IS ORDERED, that Zoe Nong is accredited to conduct LCFS verification services as a Lead LCFS Verifier for Fuel Pathways and Alternative Fuel Transactions, for three years from the date of execution of this order, provided that the following terms and conditions are met:

1. The verifier must cooperate fully with the Executive Officer or the authorized representative during any audit of the verifier or regulated entity for each verification performed, and must provide verification services as specified in sections 95500-95503, title 17, California Code of Regulations.
2. The verifier must provide and update accurate and complete conflict of interest information through the appropriate verification body as required by section 95503, title 17, California Code of Regulations.

BE IT FURTHER ORDERED, this accreditation may be modified or revoked by the Executive Officer as provided in section 95502(a) that incorporates by reference MRR section 95132(d), title 17, California Code of Regulations.

Executed at Sacramento, California on June 25, 2025.

Natalie Lee, Assistant Division Chief
Industrial Strategies Division
Delegated signatory for Dr. Steven Cliff, Executive Officer

Environment and
Climate Change Canada

Environnement et
Changement climatique Canada

Canada

Certificate of Completion Certificat de réussite

VALERIE CHAN

Has completed the Clean Fuel Regulations Verifier's Basics Training Course on
May 14th, 2025

A complété la formation de base pour les vérificateurs du Règlement sur les combustibles
propres le 14 mai 2025

Christine Schuh
Dr. Christine Schuh, Senior Program
Engineer and Course Instructor

Lorri Thompson
Lorri Thompson, Manager, Clean
Fuel Regulations

State of California
AIR RESOURCES BOARD

EXECUTIVE ORDER H3-24-001

Relating to the Accreditation as a Lead Verifier of Low Carbon Fuel Standard (LCFS) Data Reports
Pursuant to Section 95502 Title 17, California Code of Regulations

Andrea Adams

WHEREAS, the California Air Resources Board (CARB), pursuant to the California Global Warming Solutions Act of 2006 (Statutes of 2006; Chapter 488; Health and Safety Code sections 38500 et seq.), has established the LCFS program contained in sections 95480-95503, title 17, California Code of Regulations;

WHEREAS, the LCFS program requires the use of independent verifiers for verification of LCFS data reports and establishes requirements for the accreditation of verification bodies and individual verifiers by CARB;

WHEREAS, the Executive Officer has determined that the verifier meets the LCFS verifier accreditation requirements in sections 95502(c)(1) through (2) and has met, as applicable, the training and exam requirements in section 95502(a) and (c)(3)(G);

WHEREAS, the Executive Officer has determined that the verifier meets the lead verifier requirements in section 95502(c)(3);

WHEREAS, the Executive Officer has determined that the verifier meets the additional lead verifier requirement for experience in alternative fuel production technology and process engineering, pursuant to section 95502(c)(4), to lead validation of Fuel Pathway Applications and verification of Fuel Pathway Reports;

NOW, THEREFORE, IT IS ORDERED, that Andrea Adams is accredited to conduct LCFS verification services as a Lead LCFS Verifier for Fuel Pathways and Alternative Fuel Transactions, for three years from the date of execution of this order, provided that the following terms and conditions are met:

1. The verifier must cooperate fully with the Executive Officer or the authorized representative during any audit of the verifier or regulated entity for each verification performed, and must provide verification services as specified in sections 95500-95503, title 17, California Code of Regulations.
2. The verifier must provide and update accurate and complete conflict of interest information through the appropriate verification body as required by section 95503, title 17, California Code of Regulations.

BE IT FURTHER ORDERED, this accreditation may be modified or revoked by the Executive Officer as provided in section 95502(a) that incorporates by reference MRR section 95132(d), title 17, California Code of Regulations.

Executed at Sacramento, California on January 10, 2024.

Matthew Botill, Division Chief, ISD
California Air Resources Board

State of California
AIR RESOURCES BOARD

EXECUTIVE ORDER H3-22-099

Relating to the Accreditation as a Lead Verifier of Low Carbon Fuel Standard (LCFS) Data Reports
Pursuant to Section 95502 Title 17, California Code of Regulations

Jocelyn Stubenthal

WHEREAS, the California Air Resources Board (CARB), pursuant to the California Global Warming Solutions Act of 2006 (Statutes of 2006; Chapter 488; Health and Safety Code sections 38500 et seq.), has established the LCFS program contained in sections 95480-95503, title 17, California Code of Regulations;

WHEREAS, the LCFS program requires the use of independent verifiers for verification of LCFS data reports and establishes requirements for the accreditation of verification bodies and individual verifiers by CARB;

WHEREAS, the Executive Officer has determined that the verifier meets the LCFS verifier accreditation requirements in sections 95502(c)(1) through (2) and has met, as applicable, the training and exam requirements in section 95502(a) and (c)(3)(G);

WHEREAS, the Executive Officer has determined that the verifier meets the lead verifier requirements in section 95502(c)(3);

WHEREAS, the Executive Officer has determined that the verifier meets the additional lead verifier requirement for experience in alternative fuel production technology and process engineering, pursuant to section 95502(c)(4), to lead validation of Fuel Pathway Applications and verification of Fuel Pathway Reports;

NOW, THEREFORE, IT IS ORDERED, that Jocelyn Stubenthal is accredited to conduct LCFS verification services as a Lead LCFS Verifier for Fuel Pathways and Alternative Fuel Transactions, for three years from the date of execution of this order, provided that the following terms and conditions are met:

1. The verifier must cooperate fully with the Executive Officer or the authorized representative during any audit of the verifier or regulated entity for each verification performed, and must provide verification services as specified in sections 95500-95503, title 17, California Code of Regulations.
2. The verifier must provide and update accurate and complete conflict of interest information through the appropriate verification body as required by section 95503, title 17, California Code of Regulations.

BE IT FURTHER ORDERED, this accreditation may be modified or revoked by the Executive Officer as provided in section 95502(a) that incorporates by reference MRR section 95132(d), title 17, California Code of Regulations.

Executed at Sacramento, California on February 13, 2023.

Matthew Botill, Division Chief, ISD
California Air Resources Board

State of California
AIR RESOURCES BOARD

EXECUTIVE ORDER H3-24-090

Relating to the Accreditation as a Lead Verifier of Low Carbon Fuel Standard (LCFS) Data Reports
Pursuant to Section 95502 Title 17, California Code of Regulations

Allyson Standefer

WHEREAS, the California Air Resources Board (CARB), pursuant to the California Global Warming Solutions Act of 2006 (Statutes of 2006; Chapter 488; Health and Safety Code sections 38500 et seq.), has established the LCFS program contained in sections 95480-95503, title 17, California Code of Regulations;

WHEREAS, the LCFS program requires the use of independent verifiers for verification of LCFS data reports and establishes requirements for the accreditation of verification bodies and individual verifiers by CARB;

WHEREAS, the Executive Officer or their delegate has determined that the verifier meets the LCFS verifier accreditation requirements in sections 95502(c)(1) through (2) and has met, as applicable, the training and exam requirements in section 95502(a) and (c)(3)(G);

WHEREAS, the Executive Officer has determined that the verifier meets the lead verifier requirements in section 95502(c)(3);

WHEREAS, the Executive Officer has determined that the verifier meets the additional lead verifier requirement for experience in alternative fuel production technology and process engineering, pursuant to section 95502(c)(4), to lead validation of Fuel Pathway Applications and verification of Fuel Pathway Reports;

NOW, THEREFORE, IT IS ORDERED, that Allyson Standefer is accredited to conduct LCFS verification services as a Lead LCFS Verifier for Fuel Pathways and Alternative Fuel Transactions, for three years from the date of execution of this order, provided that the following terms and conditions are met:

1. The verifier must cooperate fully with the Executive Officer or the authorized representative during any audit of the verifier or regulated entity for each verification performed, and must provide verification services as specified in sections 95500-95503, title 17, California Code of Regulations.
2. The verifier must provide and update accurate and complete conflict of interest information through the appropriate verification body as required by section 95503, title 17, California Code of Regulations.

BE IT FURTHER ORDERED, this accreditation may be modified or revoked by the Executive Officer as provided in section 95502(a) that incorporates by reference MRR section 95132(d), title 17, California Code of Regulations.

Executed at Sacramento, California on April 09, 2024.

Natalie Lee, Assistant Division Chief
Industrial Strategies Division
Delegated signatory for Dr. Steven Cliff, Executive Officer

Application Grower Locations

Grower	Unique Identifier (Deal ID)	Coordinates
[REDACTED]	[REDACTED]	[REDACTED]

Grower	Unique Identifier (Deal ID)	Coordinates
[REDACTED]	[REDACTED]	[REDACTED]
[REDACTED]	[REDACTED]	[REDACTED]
[REDACTED]	[REDACTED]	[REDACTED]